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Sampling Variance of the Correlation Coefficients Estimated from
Analyses of Variance and Covariance'

M. GROSSMAN?
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Summary.

A generalized sampling variance of correlation coefficients is derived for phenotypic, genetic and en

vironmental correlations estimated from nested analyses of variance and covariance for the equal number case. A nu-
merical example is presented to estimate the sampling variance for the genetic correlation coefficient based on the

relationship among full sibs using unequal subclass numbers.

Introduction

In a breeding program, the genetic correlation be-
tween traits is usually of interest, and a minimum
variance estimate is important for precise prediction
on a short term basis. From a practical viewpoint,
it is also critical that the variance not be biased down-
ward and thus underestimated. Robertson (1959) has
derived the sampling variance of the genetic corre-
lation coefficient between two traits with equal herit-
ability, based on the intraclass correlation and
estimated from analyses of variance and covariance.
Using the analyses of variance and covariance in
a different development, Tallis (1959) derived the
sampling variance of the genetic correlation with
different heritabilities in the between-and-within sire
case. This special case was extended by Scheinberg
{1960) to include the phenotypic and environmental
correlations as well. In 1959, Mode and Robinson
estimated the variance of the genetic correlation
based on the sire component (assuming only addi-
tive components) and of the genotypic correlation
based on the dam component (involving additive
and dominance components) from a nested analysis.
They also obtained the variance of the phenotypic
correlation.

1t is the purpose of this paper to extend the de-
velopment of Mode and Robinson (1959) in order to
obtain estimates of the sampling variance of the
phenotypic, genetic and environmental correlations
estimated by appropriate combinations of the sire,
dam and progeny components from nested analyses
of variance and covariance with equal numbers.
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Estimation Procedure

A commonly employed mating scheme in quanti-
tative genetic studies is the hierarchial or nested ex-
periment in which a random sample of progeny is
observed from each dam, a random sample of dams
is mated to each sire chosen also at random. This
type of experiment requires a dam to be mated to
only one sire. The population is assumed to be under
random selection with an inbreeding coefficient of
zero and no assortative mating.

The assumed random effects model for the co-
variables to be analyzed is:

Xpije =t + Sy + Dyij 4 Eyiy

where X,;;, is the #* trait measured on the 2 progeny
of the j dam by the i* sire; u, is the true mean,
Sy; the effect of the i sire, D,;; the effect of the j*
dam within the i** sire and E,;;;, the residual effect;
and where # = trait 1 or 2, 7 =1, .. ., s sires, / = 1,
..., d dams/sire, £ =1, ..., n progeny/dam, nd is
the number of progeny/sire and sud = N the total
number of progeny. The following assumptions are
necessary:

(1) All effects have mean zero and are mutually
uncorrelated for fixed ¢.

(2) E(Sqi Sn’) = Sqr; E(ini Drii) = qu;
E(E ;s E,i;) = Eg where g and 7 denote traits 1 or 2.
If g = 7 the expectations are interpreted as variance
components and if ¢ 5~ 7 as covariance components.

(3) There is no interaction between sires and dams.
It should be noted that if interaction is indeed pre-
sent it is completely confounded with dam effects.

The model for analyses of variance and covariance
of individual values is presented in Table 1.

Estimates of the variance or covariance compo-
nents are:

E:l;’ - qu
pqr - [I/qr qu]/n
Sqr - [Uqr Vqr]/nd
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Table 1. Analyses of Variance and Covariance

Source df. MS/MCP*  E(MS)/E(MCP)

Sires (S) S—1=u Upgy EW + any + ndSy,
Dams (D)/S s{d —1)=v Var Eq, +nD
Progeny/D/S sd (n—1) = War ot

* q = r denotes mean square
q # r denotes mcan cross product

When giving genetic interpretations to these com-
ponents, it shall be assumed throughout this develop-
ment that (a) the genetic effects are additive, () the
environmental correlation between members of
families is negligible and (c) the variance due to do-
minance deviations is zero. The latter assumption is
implied in assumption (3) for the model.

Thus from Dickerson (1960) for variance compo-
nents, and Grossman and Gall (1968) for covariance
components:

Sqr = qu = Gqf/4

Ef;’ = (Gqf/z) ~+ Eqr
where G,, and E,, are the genetic and environmental
variances or covariances, respectively. The pheno-
typic variance or covariance is:

P,=G,+ E,=S,+ D, + E,.

The values of P,,, G, and E,, can be estimated,
assuming only add1tue genetic components, as

follows:
[Uqr _I" (d - 1) Vqr

+dn— W Jjnd (1)
qu =4 : = [Uqr - qr:[/”d (2)
= 4 qu - 4 [dV - qurJ/ﬂd (3)
:2(Sqr+qu>‘2[Uqr+<d—1)V
— dW,,]/nd (4)
E,,=E, —2S,=2[-U, +7V,
+ (nd) Worf2)jnd (5
= Eyy — 2D, =2[—dV,,+d((n/2) + 1) W,,]
[nd (6)
—E(,—Sq ——D =[-U, —d—-1)V,
+d (1 F 1) Wyl fnd (7)
=E,+S, —3D,=(U,—QBd+1)7V,
d At 3) W, nd (®)
*bq,ﬁ—])q,—jsq,_ — 3 Uq,+(d—i—3) V
+d(n—1) W,lnd. (9)

Using the notation of Scheinberg (1966), the corre-
lation coefficients between traits 1 and 2 are estimated
from analyses of variance and covariance by:

?o = 012/(011 622)1/2
where 7, is the phenotypic, genetic or environmental
correlation coefficient depending on whether 6 repre-
sents P, G or E; 0, is the covariance between traits 1
and 2; ,; and f,, are the variances of traits 1 and 2,
respectively.

The variance of the correlation coefficient is given
by Kendall and Stuart (1903, p. 235) as:
Var(7g) = 7 {[V“"(Aelz)/o?ﬂ + [Var(fy)/4 03]
+ [V“"(sz)@ Orz]
—Cov (03, O15) /0,y 015

~

—(Cov (912: 922)/012 O2]
+Cov (B, B2)/2 O O]} (10)
In evaluating the variances and covariances of the
f’s in terms of U, V,, and W, the following re-
lationships presented by Tallis (1959) are necessary:
Var(M,,) ~ (M,, M,, + Mj3,)/d. 1.
Cov(Mq,, M)~ (MM, 4+ M, M,)/d {
where M is U, V or W and d. {. refers to the appropri-

ate degrees of freedom #, v or w, respectively.
It follows that:

Est. Vm'( ) ~ 12 {[a? (Uy
4 [0 (Vo
+ (W

U,, + Ug,)u]
v, + Vi)
00 W + Woi)[w]}[(nd)?

7 st) ~ fz { (qu Urt + th Urs)/u]
L (Vo Vit Vor V,s)v]
+ [ (H/ VVH + th W,s)/'LU]}/(VL d)z (12)
where a, b, ¢ and f are defined in Table 2 depending
on the correlation and method used to estimate it.

Substituting equations (11) and (12) into (10), the
estimated sampling variance of the correlation coeffi-
cient between traits 1 and 2 is:

Est. Var(r) = 273 [(({a? (Up Upy + ULy)/u}
+ {0° (Vi Vaa -+ Vi) v} R
+ {2 (W Wy + W) [w} 1/07)
+ ([{a® Utifu} + {6® Vi/v}
+ {c® Wi Jw}]/2 0%)
+ ([{a® Ubfuy + {02 ViJo}
{2 Wihfw)]/2 02)
— ([{a? Uy, Upfu} j’ {Abz Vi Vielv}
+ {2 Wy Wisfw}][0 b,s)
— ([{a® Usp Uyy/u} ‘A’f“ {Abz Vie Vaslv}
+ {c® Wiy Waafw}]/0:5 Op)
+ ({a® Uy Upyfu} "i“ {Ab2 Vi Vaofv}
+ {c® Wy Waafw} ][0y Os9)]/(n d)* .
For the case of unequal subclass numbers, it should
be noted that the mean squares are not distributed
as x2o?/d.[. but as weighted sums of different y*'s

and the sampling variances of their estimates are very
complex (Anderson and Bancroft, 1952). In addition,

(11)
Est. Cov(é

(13)
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Table 2. Coefficients Used in Variance of Correlation

Coefficient
Equatigh number ‘ Coefficients
used to estimate @ b c f
correla‘mon
Phenotypic
(1) 1 {d—1) dn— 1 1
Genetic
(2) Sire component 1 1 0 4
(3) Dam component 0 a d 4
(4) Sire plus dam 1 (d—1) d 2
(:omponents
Enwronmcntal
(5) 1 1 ndl2 2
(6) 0 d d{(nf2) + 1) 2
(7) 1 (d—1) dn+1) 1
(8) 1 (3d+1)d(n+ 3) 1
{9) 3 {d+3) dn—1) 1
Table 3. Analyses of Variance and Covariance
Source d.f. MS(§) MCP(b 12) MS(12)
Sires (S) 31 23,410 35,592 66,634
Dams (D)/S 18 19,134 25,187 37,381
Progeny/D/S 175 9,349 13,241 23,613

Total 224

Kendall and Stuart (1963, p. 236) do not recommend
the use of the standard error developed here for tests
of significance since the sampling distribution of 7 is
unknown and tends to normality slowly.

Numerical Example

A numerical example is presented to illustrate the
use of analyses of variance and covariance with un-
equal subclass numbers in estimating the variance
of the genetic correlation coefficient. Body weight
data was collected at the Purdue University Poultry
Center I'arm on Rhode Island Red males at 8 and 12
weeks of age. The experiment was in a nested arran-
gement with between one and seven progeny per dam
and one to three dams per sire. The average number
of progeny per sire was 6.9, the average number of
dams per sire was 1.5 and the average number of
progeny per dam was 4.6. These values should be
substituted for nd, d and #, respectively. The average
numbers may be obtained by substituting 1/2 (k;+4,)
for » and &; for »nd. The method of calculating %,, %,
and £, is contained in Grossman and Gall (1968).

The method of calculation presented in this ex-
ample uses the full sib (sire plus dam) components,
equation (4). Therefore, the values for 4, b, ¢ and {
are 1.0, 0.5, 1.5 and 2.0, respectively (see Table 2).
The appropriate values of U, V, W and #, v, w are
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found in Table 3. From equation 4, the genetic
variances and covariance can be estimated as:

Gag = 2[23,410 + 0.5 (19,134) — 1.5 (9,349)1/6.0

o =5,494.

Grans = 2 (66,634 + 0.5 (37,381) — 1.5 (23,613)]/6.9

= 14,465,

Gena = 2 135,502 + 0.5 (25,187) — 1.5 (13,241)1/6.9
= 8§,210.

TFrom these estimates, the genetic correlation co-
efficient can be estimated as:

76 = 8,210/(5,494 - 14,465)12 = .92

The above information can be combined to esti-
mate the variance of the genetic correlation coeffi-
cient:

Est. Var(rg) = 4 ((92)% [({{(23,410 - 66,634
5,592%)/31}
25 (19,134 - 37,381 + 25,187%)/
8}
2.25 (9,349 - 23,613
3,241%)/175}1/8,210%) | - - -
[{(23,410 - 66,634)/31}
0.25 (19,134 - 37,381)/18}
{2.25 (9,349 - 23,613)/175} ]/
5,494 - 14,465)]/6.9*
= 0.12.
Therefore, the standard error of the genetic corre-
lation coefficient is 0.35.
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