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Sampling Variance of the Correlation Coefficients Estimated from 
Analyses of Variance and Covariance 1 

M. GROSSMAN 2 

Agricultural Experiment Station, Purdue University, Lafayette, Indiana (USA) 

Summary. A generalized sampling variance of correlation coefficients is derived for phenotypic, genetic and en 
vironmental correlations estimated from nested analyses of variance and covariance for the equal number case. A nu- 
merical example is presented to estimate the sampling variance for the genetic correlation coefficient based on the 
relationship among full sibs using unequal subclass numbers. 

In troduct ion  

In a breeding program, the genetic correlation be- 
tween traits is usually of interest, and a minimum 
variance estimate is important  for precise prediction 
on a short term basis. From a practical viewpoint, 
it is also critical that  the variance not be biased down- 
ward and thus underestimated. Robertson (1959) has 
derived the sampling variance of the genetic corre- 
lation coefficient between two traits with equal herit- 
ability, based on the intraclass correlation and 
estimated from analyses of variance and covariance. 
Using the analyses of variance and covariance in 
a different development, Tallis (1959) derived the 
sampling variance of the genetic correlation with 
different heritabilities in the between-and-within sire 
case. This special case was extended by Scheinberg 
(1966) to include the phenotypic and environmental 
correlations as well. In t959, Mode and Robinson 
estimated the variance of the genetic correlation 
based on the sire component (assuming only addi- 
tive components) and of the genotypic correlation 
based on the dam component (involving additive 
and dominance components) from a nested analysis. 
They also obtained the variance of the phenotypic 
correlation. 

I t  is the purpose of this paper to extend the de- 
velopment of Mode and Robinson (1959) in order to 
obtain estimates of the sampling variance of the 
phenotypic, genetic and environmental correlations 
estimated by appropriate combinations of the sire, 
dam and progeny components from nested analyses 
of variance and covariance with equal numbers. 
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E s t i m a t i o n  Procedure  

A commonly employed mating scheme in quanti- 
tative genetic studies is the hierarchial or nested ex- 
periment in which a random sample of progeny is 
observed from each dam, a random sample of dams 
is mated to each sire chosen also at random. This 
type of experiment requires a dam to be mated to 
only one sire. The population is assumed to be under 
random selection with an inbreeding coefficient of 
zero and no assortative mating. 

The assumed random effects model for the co- 
variables to be analyzed is: 

Xtiik = ,ut "4- S~i + Dti j + Etijk 

where Xtijk is the t th trait measured on the ktn progeny 
of the ]~n dam by the i th sire; /~t is the true mean, 
Sti the effect of the i r sire, D . i  the effect of the ]fh 
dam within the i th sire and Etiik the residual effect; 
and where t = trait t or 2, i = l . . . . .  s sires, j' = I, 
. . . ,  d dams/sire, k = 1 . . . . .  n progeny/dam, nd is 
the number of progeny/sire and snd = N tile total 
number of progeny. The following assumptions are 
necessary : 

(1) All effects have mean zero and are mutually 
uncorrelated for fixed t. 

(2) E(Sqi Sti  ) = S q r  ; E(Dqq Drij) = Dqr ; 
E(Eqii~ E,iik ) = E;, where q and r denote traits I or 2. 
If q = r the expectations are interpreted as variance 
components and if q ~c r as covariance components. 

(3) There is no interaction between sires and dams. 
It  should be noted that  if interaction is indeed pre- 
sent it is completely confounded with dam effects. 

The model for analyses of variance and covariance 
of individual values is presented in Table I. 

Estimates of the variance or covariance compo- 
nents are : 

~qr  = [Vqr - -  W q r l / n  
Sqr : IUqr - -  V q r l / n d .  
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Table 1. Analyses of Variance and Covariance 

Source d.f. MS/MCP* E(MS)/E(MCP) 

Sires (S) s -- I = U Uqr Eqr + n Dqr + ndSqr 
Dams (D)/S s (d -- 1) v Vqr Eqr + nDqr 
Progeny/D/S sd ( n -  1 ) = w Wqr E'q, 

* q = r denotes mean square 
q :/- r denotes mean cross product 

When giving genetic interpretations to these com- 
ponents, it shall be assumed throughout this develop- 
ment that  (a) the genetic effects are additive, (b) the 
environmental correlation between members of 
families is negligible and (c) the variance due to do- 
lninance deviations is zero. The latter assumption is 
implied in assumption (3) for the model. 

Thus from Dickerson (1960) for variance compo- 
nents, and Grossman and Gall (1968) for covariance 
components : 

Sqr : Dqr = Gqr/4 
E;r : (Gqr/2) + Eqr 

where Gq, and Eqr a r e  the genetic and environmental 
variances or covariances, respectively. The pheno- 
typic variance or covariance is: 

Pqr = Gqr @ Eqr : -  Sqr -1- Dqr @ Eqr .  

The values of Pqr, Gq, and Eqr can be estimated, 
assuming only additive genetic components, as 
follows : 

I~ = Sqr ~- 15qr @ if.;, = [Uq, + (d - -  '1) Vqr 
"-[- d (~ - -  1 )  Wqr]/fld (1) 

Gqr = 4 @, = 4 [Uqr -- Vqr]/nd (2) 
= 4 Dq, = 4 [dVq, --  dWq,]/nd (3) 

- -  2 (Sqr Jr- Dqr) - -  2 [gqr -I I- (d - -  1) Vqr 
-- dWqr]/nd (4) 

Fqr = E;r  - -  2 Sqr = 2 [ - - U q r  @ Vqr 
-~- (nd) W ,  r/2]/nd (5) 

~- E.q, -- 2]~qr = 2 [ - -  dVqr@d((n /2  ) -I- 1) Wqr ] 
/ . d  (6) 

= E;r  - -  Sqr - -  ]Sqr = [ - -Uqr  --  (d --  1) Vqr 
+ d (n + t) Wq,]/nd (7) 

@ d (n + 3) War]/rid (8) 

~'qr -~- Dqr --  3 Sqr - -  [ - -  3 Vqr "@ (d + 3) V 
+ d (.  - 1) w~,] / .d .  (9) 

Using the notation of Scheinberg (/966), the corre- 
lation coefficients between traits t and 2 are estimated 
from analyses of variance and covariance by: 

;o = 012/(bn 022) 1'2 
where ro is the phenotypic, genetic or environmental 
correlation coefficient depending on whether 0 repre- 
sents P, G or E ; 012 is the covariance between traits 1 
and 2; 011 and 022 are the variances of traits I and 2, 
respectively. 

The variance of the correlation coefficient is given 
by Kendall and Stuart  (1963, p. 235) as" 

Var(~o) = r'~ {[Var((~2)/O~ 1 + [Var(On)/4 0~1 ] 

+ IVar~221/4 0221 
--~Cov (011, 012)/011 0121 
--iCov (012, 0~2)/012 022? 
-}-[Coy (0u, 022)/2 011 022]} (10) 

In evaluating the variances and covariances of the 
O's in terms of Uqr, Vqr and Wq, the following re- 
lationships presented by Tallis (t959) are necessary: 

Var(Mq~) ~ (Mqq M, ,  + Mq~)/d. f. 
Cov(Mqr , Mst ) ~ (Mqs M, t  + Mqt M,,) /d .  f. 

where M is U, V or W and d. f. refers to the appropri- 
ate degrees of freedom u, v or w, respectively. 

I t  follows that :  

Est. Var(Or ~-~ 12 {[.~ (Uqq u .  + U~r)I< 
+ [b2 (Vqq V .  + v~.)/v] 
+ ~c 2 (w~ w .  + w~,)/w]}/(ud) 2 (t~) 

Est. Cov(Oq, 0st) ~ / 2  {[a2 (Uq~ U,t + Uqt U~)/u] 
~_ [~2 (Vqs Vr t ~_ Vqf Vrs)lV] 
+ I~ 2 (w~ w,, + Wq, w.)/w!}/(n d) 2 (12) 

where a, b, c and / are defined in Table 2 depending 
on the correlation and method used to estimate it. 

Substituting equations (tl)  and (12) into (10), the 
estimated sampling variance of the correlation coeffi- 
cient between traits t and 2 is: 

Est. Var(;o) = /2 7'g [([{a 2 (gll  U22 + U'~)/IA} 
-@ {b 2 (Vii V22 -@ r ]2  )/v} 

2 ~ ~2 + {c 2 (Wll w2~ + Wa~)/~.,),/o~) 
2 + (I{a 2 g~d-}  + {b 2 V~/~,} 

-@ (C 2 W~1/~'}]/2 ~0'~,) 
+ ([{~2 u'~2/u} + {b~ v~/v} 

% 
+ {c 2 W~2/w}]/2 02~) (13) 

__ ([{a2 U11 U12/u} _@ {?2 V11 V12/v } 

-~ {C 2 1/Vll W12/72)}]/011 012) 
- -  ([{a 2 U12 g22/u} @ {b 2 V12 V22/v} 

+ {c2 W~2 W2dw}]/012 022) 
@ (i{a2 g l  1 g22/q/~} @_ {?2 V11 r22/v} 
-~ {C 2 Wll  W22/w}]/Oll 022)]/( ~ d) 2.  

For the case of unequal subclass numbers, it should 
be noted that  the mean squares are not distributed 
as z 2 a2/d.f, but  as weighted sums of different g2's 
and the sampling variances of their estimates are very 
complex (Anderson and Bancroft, 1952). In addition, 
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Table 2. Coefficients Used in Variance of Correlation 
Coefficient 

Equation number Coefficients 
used to estimate a b c [ 
correlation 

Phenotypic 
(t) ~ ( d - ~ ;  ca(~- l )  1 

Genetic 
(2) Sire component I 1 0 4 
(3) Dam component 0 d d 4 
(4) Sire plus dam 1 (d -- 1) d 2 

components 

Environmental  
(5) 1 t n d/2 2 
(6) 0 d d((n/2) @ I) 2 
(7) '1 (d - -  1) d (n  q- I) 1 
(8) ~ ( 3 d + ~ ) d ( n + 3 )  
(9) 3 (d + 3) d ( n - -  1) 1 

Table 3. Analyses of Variance and Covariance 

Source d.f. MS(8)  MCP(8,12) MS(t2) 

Sires (S) 31 23,410 35,592 66,634 
Dams (D)/S 18 19,134 25,t87 37,381 
Progeny/D/S t 75 9,349 13,24t 23,613 

Total 224 

Kendal l  and  S tuar t  (t963, p. 236) do not  r ecommend  
the use of the s t andard  error developed here for tests 
of significance since the sampl ing  d i s t r ibu t ion  of r is 
u n k n o w n  and tends  to no rma l i t y  slowly. 

Numerical Example 

A numer ica l  example is presented to i l lus t ra te  the 
use of analyses of var iance  and  covariance with un-  
equal  subclass number s  in es t imat ing  the var iance 
of the genetic correlat ion coefficient. Body weight 
da ta  was collected at the Purdue  Univers i ty  Pou l t ry  
Center  F a r m  on Rhode Is land Red males at 8 and  ~ 2 
weeks of age. The exper iment  was in a nes ted arran-  
gement  with be tween one and  seven progeny per dam 
and  one to three dams per sire. The average n u m b e r  
of progeny per sire was 6.9, the average n u m b e r  of 
dams per sire was 1.5 and  the average n u m b e r  of 
progeny per dam was 4.6. These values should be 
subs t i t u t ed  for nd, d and n, respectively.  The average 
n u m b e r s  may  be ob ta ined  by  subs t i tu t ing  t /2  (kl+k~) 
for n and  k a for nd. The method  of calculat ing kl, h 2 
and k s is con ta ined  in Grossman and Gall (t968). 

The method  of calculat ion presented in this  ex- 
ample uses the full sib (sire plus dam) components ,  
equa t ion  (4). Therefore, the values for a, b, c and  / 
are t .0, 0.5, 1.5 and  2.0, respect ively (see Table  2). 
The appropr ia te  values of U, V, W and u, v, w are 

found in Table  3. F rom equa t ion  4, the genetic 
var iances  and covariance can be es t imated  as: 

Gs, s = 2 [23,4t0 + 0.5 (19,134) - -  t.5 (9,349)1/6.9 
= 5,494. 

G12,12 = 2 ~66,634 + 0.5 (37,381) - -  1.5 (23,613)1/6.9 
= 14,465. 

G8,12 = 2 [35,592 + 0.5 (25,t87) --  t.5 (13,241)1/6.9 
- -  8,210. 

F rom these est imates,  the genetic correlat ion co- 
efficient can be es t imated  as: 

~ = 8 ,2t0/ (5 ,494.  t4,465) '/~ = .92.  

The above in fo rma t ion  can be combined  to esti- 
mate  the var iance  of the genetic correlat ion coeffi- 
cient : 

Est. Var(~G) = 4 (.92) 2 [([{(23,410. 66,634 
+ 35,592e)/31 } 
+ {.25 (19 , t34 .37 ,381  + 25,1872)/ 

18} 
+ {2.25 (9,349' 23,6t3 
+ 13,2412)/t75}1/8,2102 ) + . . .  
+ ([{(23,410.66,634)/31} 
+ {0.25 ( t9 ,134.37,381) /18} 
+ {2.25 (9,349" 23,613)/t75}1/ 
5,494. 14,465)]/6.92 
= 0.12 . 

Therefore, the s t anda rd  error of the  genetic corre- 
la t ion coefficient is 0.35. 
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